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Do we need to estimate inventory completeness?

Utility and drawbacks of modelling techniques for biodiversity databases mining
(A document for the debate between the community interested in the application of current taxonomic and distributional data)
Taxonomic and distribution information shall be reliable
The conservation of biodiversity is an international goal. It needs a joint co-operation effort to put together all the information on biodiversity at hand to assess conservation priorities according to current status of biodiversity and current and potential threats. To do this, a number of taxonomic and biogeographic database programs are being developed and merging in Biodiversity Information Networks (herein, BIN) (Soberón et al. 1996; Bisby, 2000; Saarenmaa & Nielsen, 2002; Godfray, 2002; GBIF 2003; Graham et al., 2004; Hortal et al., 2007; Guralnick et al., 2007). All these initiatives are gathering all the taxonomic and biogeographic information stored during more than two centuries in the bibliography and natural history collections.

Conservation and research on biodiversity need to be based in a good knowledge of the taxonomy and distribution of fauna and flora, which constituted the so called taxonomic and biogeographic quality standards in biodiversity databases jargon. However, we are far from knowing the whole catalogue of life, not to talk about the distribution of all these biological diversity. In the countries with a long naturalist tradition survey effort has been intense but little coordinated, generating a huge amount of taxonomic and chorological data dispersed in the bibliography and natural history collections. On the contrary, there is not enough taxonomic and biogeographical information about most part of world’s richest regions. Due to this, well-known groups and exhaustively inventoried areas are the exception rather than the rule, in spite of the mass amount of data being currently gathered; for most part of the biota and regions, there exist only a few local inventories and some sporadic uncoordinated captures. This is especially true for hyperdiverse groups of organisms such as invertebrates (more than 80% of global species richness), and for the severely threatened and species rich global hotspot areas.
Conservation biologists face a conflict of interests; on the one hand, we need biological information for basic and applied studies; on the other, we need to be cautious due to the lack of quality and incompleteness of most of this information. Additional surveys directed to fill in all gaps in knowledge are not a plausible option, since recovering a reliable picture of the distribution for highly diverse taxa is a colossal task, which is hampered by limited time and resources (in terms of both manpower and financial support). Rather, alternatives to assess the reliability and/or enhance the information currently stored in biodiversity databases are preferred (Hortal et al., 2007; Guralnick et al., 2007). Within such framework, there are a number of questions to answer before universalizing the direct use of the information from BIN such as GBIF: Are the obtained representations of the species geographic ranges reliable and comparable? What is the effect of the spatial and temporal variation in collection effort on these representations? Is it possible to identify localities/areas with reliable inventories? Where are these well surveyed localities located? Are they environmentally or spatially biased? What is the effect of these biases in the picture of biodiversity offered by current data? Can we use such partial (and frequently biased) biological information to create reliable predictive maps of species distributions? Answering these questions and overcoming the problems they highlight are central for the good use of the biological information currently available.

Bias in taxonomic and distribution information
The process of compiling information on species distributions presents a marked pattern of spatial bias and survey incompleteness (Dennis & Hardy, 1999; Dennis et al., 1999; Soberón et al., 2000; Lobo et al., 2007). Species location data suffers from the temporal bias in the recording process: distribution data collected at different times generally results in different distribution maps for the same species (Lobo et al., 2007). Such spatially and environmental structured increase in species data over time is the consequence of an expansion of the species range resulting from sociological, environmental, or sampling effort bias (Dennis & Hardy, 1999; Dennis et al., 1999; Dennis & Thomas, 2000; Dennis et al., 2006; Zaniewski et al., 2002; Anderson, 2003; Reutter et al., 2003; Graham et al., 2004; Soberón & Peterson, 2004; Martínez-Meyer, 2005), in which species occurring in those places with a prolonged taxonomical tradition have more possibilities of being discovered than the remaining ones, generally located in southern more species rich regions (Cabrero & Lobo, 2003). Due to this, site accessibility, distance from the place of residence of the collecting taxonomist, or degree of interest to the naturalist, are all key parameters leading to the observed concentration in species presences (Nelson et al., 1990; Peterson et al., 1998; Dennis & Thomas, 2000; Parnell et al., 2003; Reddy & Dávalos, 2003). Hence, the efficiency of biodiversity selection procedures for conservation purposes can be highly conditioned by the quality and spatial bias of the used biological information (Nelson et al., 1990; Faith, 2002; Williams et al., 2002; Hortal & Lobo, 2006; Hortal et al., 2007).
Having the bias in biodiversity data and the rest of above mentioned questions in mind, some methods to improve biodiversity information have been developed. For example, a three step biodiversity assessment framework for conservation has been suggested, comprising surveys, interpolation of biodiversity distribution through predictive modelling and reserve selection techniques (Austin 1998; Margules & Pressey 2000; Ferrier 2002; Ferrier et al. 2002a, b). Conservation strategies arisen from such framework can be successful if they are based in good-quality information. Here, modelling techniques are believed to overcome bias in biodiversity information; they are supposed to offer the biodiversity information required by biologists and policy makers easily and quickly (Guisan & Zimmermann, 2000; Guisan & Thuiller, 2005; Elith et al., 2006; Araújo & Guisan, 2006). However, if the biological information used presents important environmental and/or geographic biases, the predictive maps obtained could present important drawbacks (Hortal & Lobo, 2006; Hortal et al., 2007).
Guralnick et al. (2007) promote the use of GBIF data and some of the bioinformatic tools available to overcome the gaps in biological data. These methods represent the first waves of biodiversity informatics (Soberón & Peterson, 2004), and provide a number of good options to compensate for the inaccuracies of biodiversity data. However, we believe that current limitations and biases of biodiversity data might compromise their use. Therefore, we here argue that these problems can be diminished if (i) more attention is paid to the quality of the information used, assessing its reliability, (ii) a few additional well-planned surveys are eventually carried out to eliminate the undesired effects of environmental and geographic bias, and (iii) some enhancements are included in the data used to produce predictive models. A comprehensive protocol integrating these three aspects is available elsewhere (Hortal et al., 2007), but here we make an overview of them.
Identifying well surveyed territories
Adequately sampled areas host reliable inventories of the species assemblage, and can be used to assess the absence of species to improve predictive models of species distributions. The methods developed to study inventory processes allow identifying well surveyed areas, provided that a sampling effort measure is available. Species Accumulation Curves (also known as Collector’s Curves) plot the number of species added to the inventory as sampling effort increases (Soberón & Llorente, 1993; Colwell & Coddington, 1994; Fagan & Kareiva, 1997; León-Cortés et al., 1998; Moreno & Halffter, 2000; Gotelli & Colwell, 2001). Since the more the sampling effort is carried out, the more species are captured, capturing new species gets progressively harder. Due to this, these curves show an asymptotic behaviour, being the asymptote the actual number of species in the studied area (i.e., the maximum number of species that can be captured there). This relationship is fitted to an asymptotic function, which relates the species accumulation with the sampling effort carried out (Soberón & Llorente, 1993).
Species accumulation curves have been used as a tool to estimate species richness by extrapolating the function found to its asymptote, although their utility for this task is still being debated (e.g., Colwell & Coddington, 1994; Gotelli & Colwell, 2001; Willott, 2001; Moreno & Halffter, 2001; Hortal et al. 2004, 2006). However, it is well known that they are very useful to describe the current rate of finding new species for the inventory (Soberón & Llorente, 1993; Hortal & Lobo, 2005; Soberón et al., 2007). The slope of the species accumulation curve describes such rate, and can be used as a measure of survey completeness at each moment of the survey (Hortal et al., 2004; Hortal & Lobo, 2005): the higher the slope of the curve, the greater the sampling effort necessary to obtain a good inventory. Conversely, the smaller the slope, the higher the completeness of the survey, since an important amount of additional sampling effort, would not add significant numbers of species to the inventory. If the slope is small, but not zero, it can be assumed that the species missing from current inventory are locally rare or vagrants (see Moreno & Halffter, 2000), and the inventory can be considered reliable enough, though incomplete. As the shape of this curve may vary depending on the order of sample accumulation, an ‘ideal’ smoothed curve can be obtained by using the analytical formulas of Colwell and collaborators (2004) (see also Mao et al., 2004). An equivalent formula for expected richness, but not for the variance, was independently developed by Ugland and collaborators (2003). This method is a precise equivalent of the random resampling technique used previously (Colwell, 2000) for computing these curves. The slope can be easily calculated from the fitted function, for it is the first derivative of such function. Although many functions have been proposed to describe this relationship (Soberón & Llorente, 1993; Colwell & Coddington, 1994; Flather, 1996; Fagan & Kareiva, 1997; Moreno & Halffter. 2000), we have favoured the use of the Clench equation, since it avoids problems of overfitting and critical richness underestimation, providing a good description of the inventory process (Hortal et al., 2004; Hortal & Lobo, 2005). Once the function has been fitted, a simple but powerful measure of inventory completeness is the slope of the curve at current sampling-effort level. Though no studies have explored which is the most adequate slope cut-off to identify a reliable inventory, it is possible to use the intuitive thresholds or 0.1 or 0.05 (i.e. one species each 10 or 20 units of sampling effort, respectively) depending on the sampling effort measure used (see below), being more restrictive if more accurate level of knowledge for the inventory is needed.


However, usually biodiversity databases have been compiled from heterogeneous sources (ecological studies, sporadic captures, data from natural history collections, etc), and therefore lack a common measure of sampling effort, such as hours/person, traps/day, standardized squares, etc. Collector’s curves require a spatially and temporally homogeneous and comparable sampling effort unit. A first option could be the use of recorded individuals as a measure of the effort (e.g., Hortal et al., 2004). However, individuals are an unbiased measure of survey effort only if they were exhaustively recorded, i.e., their numbers reflect the actual abundances of the species in the field, or, at least, their detectability. That could be the case for some surveys, especially those based in traps or active bird or butterfly counts. However, in most cases historical surveys aimed to raise Natural History Collections, and therefore rare (or less detectable) species are overrepresented (and common species underrepresented) in the samples gathered by classical collectors. An alternative measure that accounts for this problem is to use the number of database records as a measure of sampling effort (Lobo & Martín-Piera, 2002; Hortal et al., 2001).
A database record refers to each time that a species is recorded in a different place, day, trap, or by a different collector, regardless of the number of individuals found. Therefore, this measure is independent of the number of individuals captured, but not of the number of times a species has been recorded or the number of times each collector went to the field. This measure has successfully been used a number of times to measure sampling effort and to describe the process of species accumulation from heterogeneous data (Hortal et al., 2001; Lobo & Martín-Piera, 2002; Martín-Piera & Lobo, 2003; Romo & García-Barros, 2005; Romo et al., 2006). Also, its behaviour was similar to some standardized effort measures such as traps, transects or individuals in a recent comparison of richness estimators (Hortal et al., 2006). However, this measure requires that database information has been gathered exhaustively; incompletely digitized information compromises the correct characterization of survey effort, compromising the utility of data from biodiversity databases (Hortal et al., 2007). Therefore, we encourage that all information is exhaustively digitized following the standards of GBIF without wasting those seemingly redundant data belonging to the same species and locality.
Allocating additional sampling sites
If important gaps of information appear once the well surveyed territories are identified, it might be necessary to allocate additional surveys (Neldner et al., 1995; Barnett & Stohlgren, 2003). Their success in covering biodiversity patterns will be much improved if they are allocated with the aim of representing as much as possible of the spatial and environmental variability of the studied territory, while minimizing resources devoted to surveys (Ferrier, 2002; Hortal & Lobo, 2005; Funk et al., 2005; Rocchini et al., 2005). Traditionally, protocols for the allocation of sampling points within a territory rely in (i) selecting points randomly or regularly in space (Southwood & Henderson, 2000; Hirzel & Guisan, 2002), (ii) obtaining truly statistically-independent samples (Davis & Goetz, 1990; Pereira & Itami, 1991), or (iii) placing survey points to cover all the environmental spectrum (stratified, gradsect and ED methods; Gillison & Brewer, 1985; Austin & Heyligers, 1989, 1991; Belbin, 1993; Faith and Walker, 1994, 1996; Bunce et al., 1996; Wessels et al., 1998; Hirzel and Guisan, 2002). If the distribution of biodiversity were a direct effect of environmental variations, the latter might be the most cost-effective option. However, dispersal limitations and historical factors, as well as the different responses to environment of different species and/or groups diminish the representation of biodiversity provided by environmental variation (Araújo et al., 2001). Due to this, it seems more cost-effective to allocate sampling sites to cover environmental variation, including spatial variables as well, to account for distant places with similar environmental conditions but hosting different species assemblages (Ferrier, 2002; Hortal & Lobo, 2005).
Predicting species distributions
Predictive modelling tools allow filling in the gaps without resorting to the impractical task of surveying exhaustively a whole region. Modelling techniques are generally based in establishing the relationship between a set of predictors (frequently climatic variables) and the presence-absence of the target species. Predictions are based in such relationship. Currently, there are a number of techniques that allow predicting the distribution of species (Guisan & Zimmermann, 2000; Guisan & Thuiller, 2005; Elith et al., 2006; Araújo & Guisan, 2006), which essentially differ in the complexity of the relationships established between dependent and explanatory variables. If the well surveyed areas represent the full range of environmental and spatial variation (as discussed above), predictive models will interpolate biodiversity distribution, rather than extrapolating it to unknown conditions or areas (Austin & Heyligers, 1989; Ferrier, 2002; Ferrier et al., 2002a,b), increasing their accuracy and reliability (Kadmon et al., 2004). Therefore, they constitute the logical step once a good coverage of the variations in biodiversity composition is available (after assessing the reliability of inventories and, eventually, carrying out some additional surveys; Hortal et al., 2007).
Although predictive modelling is frequently considered a “hard” and useful strategy to account for the lack of distributional information, model outcomes often overpredict the distribution of species (Fielding & Haworth, 1995; Araújo & Williams, 2000; Stockwell & Peterson, 2002; Brotons et al., 2004; Segurado & Araújo, 2004; Stockman et al., 2006; Hortal & Lobo, 2006; see also Soberón & Peterson, 2005; Araújo & Guisan, 2006). Due to this, predictive models have few opportunities of being functional in conservation, and only a few studies use the predictive maps for conservation purposes. To be useful, predictive models shall provide geographical representations of the actual area where the species occurs. The reliability of predictive maps depends on many factors (or potential sources of error), but three stand out as the most important: (i) quality of biological data; (ii) predictive power of the predictors; and (iii) modelling technique. While most recent work on the improvement of predictive modelling results has been devoted to the latter factor (e.g., Brotons et al., 2004; Segurado & Araújo, 2004; Pearson et al., 2006; Elith et al., 2006), the effects of the other two sources of error have been less studied, in spite of being highlighted (see Soberón & Peterson, 2005; Barry & Elith, 2006; Araújo & Guisan, 2006). We believe that accounting for the first source of error (quality of biological data) lies within the objectives of projects that aim to compile taxonomical and distributional data. Therefore, we discuss how to improve biological data coming from biodiversity databases.
Good models need good biological data, with the best possible information about the presence and absence of the species. Species presence data constitutes the bulk of biodiversity databases; absences (i.e., localities ore areas where the species is not present), however, are usually not recorded. Although biologists may know the places where a species is unlikely present, such data is usually not published. Thus, reliable absence data is often not available, and therefore true absences can not be distinguished from sites where the species is in fact present, but has not been recorded due to insufficient sampling effort. However, species are often absent from sites with environmentally favourable conditions due to biological interactions, dispersal limitations and/or historical factors (Ricklefts & Schluter, 1993; Hanski, 1998; Pulliam, 1998; Pulliam, 2000), so their actual and potential geographic distributions differ in space (Soberón & Peterson, 2005). If the aim of predictive maps is to depict the current distribution of species, absences from suitable areas should be taken into account (see Lobo et al., 2006), as well as predictors that account for the exclusion of species from some parts of their potential distribution.
Some predictive modelling techniques do not use absences at all (profile techniques, e.g., Bioclim, MaxEnt, GARP or Biomapper), which hampers including the exclusion of the species from some areas. In these techniques absences are implicitly understood as the places that differ (to some extent) from the presence information available. Therefore, errors in predictive maps will appear if the presence localities where not obtained from an exhaustive and spatially homogeneous sampling effort (see, e.g., Hirzel et al., 2001; Stockwell & Peterson, 2002; Zaniewski et al., 2002; Engler et al., 2004; Kadmon et al., 2004; Hortal & Lobo, 2005; Reese et al., 2005; Soberón & Peterson, 2005; Vaughan & Ormerod, 2005).
Other techniques require presence and absence data (discrimination techniques, e.g., GLMs, GAMs or Neural Networks), a requirement that could allow including data on the exclusion of the species from some potentially suitable areas. The abovementioned lack of records for the absence of species could be compensated by selecting pseudo-absences (i.e. places where the absence of the species is assumed). However, pseudo-absences data are often selected at random without examining their reliability (e.g., Elith et al., 2006; Elith & Leathwick, 2007). If pseudo-absences are selected at will, (the common) biases in biological information (see above) will result in an uncertain number of false absences (sites where the species is present but has not been detected; see Anderson, 2003 or Loiselle et al., 2003). More sensible options are to select pseudo-absences from areas with environmental conditions out of the environmental range where species presences are found (Engler et al. 2004, Lobo et al. 2006), or among the areas with environmental characteristics similar to those contain well sampling data for whole considered group (Ferrier and Watson 1997, Zaniewski et al. 2002). Of course, the former strategy might be useful to produce maps of the potential distribution of species, but it might fail to do so with their actual distribution. Though being better than selecting pseudo-absences at will, both options might still select some false absences in environmental conditions or geographic areas where the species presence of the species is yet, neglecting also the potentially important true absences that might be placed within the environmental or geographical range covered by known presences.

Distinguishing true from false absences during the selection of pseudo-absences might be a key step to obtain reliable predictive maps of species distribution (see Ferrier and Watson, 1997; Hirzel et al., 2001; Zaniewski et al., 2002; Tyre et al., 2003; Engler et al., 2004; Gu and Swihart, 2004; Soberón & Peterson, 2005; Martin et al., 2005; Lobo et al., 2006 or Jiménez-Valverde & Lobo, 2006). Using the information from sites with reliable inventories might guarantee obtaining reliable predictions, if these sites are geographic and environmentally well distributed (Margules et al., 1987; Bojóquez-Tapia et al., 1996; Iverson and Prasad, 1998; Zimmermann and Kienast, 1999; Hortal et al., 2001; Lobo & Martín-Piera 2002; Lobo et al., 2002). The abovementioned joint use of the survey analysis and sampling allocation (Hortal & Lobo, 2005; Hortal et al., 2007) might account for the good quality data needed to improve the reliability of predictive maps of species distributions. Here, we suggest using the well-surveyed sites to obtain pseudo-absences; that is using as pseudo-absences those sites where the species has not been collected after an important survey effort that resulted in a highly reliable inventory, assuming that if the species was present, the effort carried out would have been enough to record it. Presence data does not need to come from well-surveyed sites, so all reliable records could be used. This approach might be difficult to apply for some rare or difficult to detect species, or for barely known groups, but we are aware it is be an affordable task for a number of groups and species whose distribution is being predicted nowadays.
(Current) Concluding Remarks
To summarize, although the tools currently available to use the data from biodiversity databases protocols are ready, we believe that in most cases the data currently available is not exhaustive enough to be used without a previous check-up. Thus, before any analysis, it is recommendable to: i) assess the reliability of the biological data for the studied group, ii) compile and analyze the existing information to identify areas with reliable inventories, and, eventually, iii) design and run a survey to optimize the coverage of data on biodiversity patterns. These steps allow use reliable data on the presence and absence of species to create predictive maps of their distribution. Therefore, we suggest that, apart from currently available tools (see below and Guralnick et al., 2007) some software able to analyze survey effectiveness and to design surveys must be developed for the taxonomist community interested the application of current taxonomic and distributional data. Once available, such software should be the first step to analyze raw data extracted from biodiversity databases. A good use of biodiversity data will come only by assessing the reliability of data and accounting for its actual quality and accuracy. If the weaknesses of data are previously known and their analysis takes these drawbacks honestly into account, the conclusions gathered will be robust and trustable. And nevertheless, uninformed or malicious sceptics would find harder to cast shadows about the biodiversity crisis or the effects of climate change.


Available software

· Discerning well surveyed territories

· EstimateS. Statistical estimation of species richness and shared species  from samples (http://viceroy.eeb.uconn.edu/estimates)

EstimateS is a free software application for Windows and Macintosh operating systems that computes a variety of biodiversity functions, estimators, and indices based on biotic sampling data. Some features require species relative abundance data, others only species presence/absence data

· Ws2m. Software for the measurement and analysis of species diversity (http://eebweb.arizona.edu/diversity/)


Ws2m estimate the number of species in a collection of identified individuals generating a series of statistics for a randomly ordered data set. Ws2m uses a large (and user-controllable) variety of estimators to produce the estimates. It also reports the number of individuals used to that point and the actual number of species so far obtained in the collection. It can report species-abundance distributions and Jaccard indices. 

· SPADE. Species Prediction And Diversity Estimation (http://chao.stat.nthu.edu.tw/)

SPADE estimates species richness, shared species richness and various diversity and similarity indices, based on different types of sample data from one or two communities. 

· EcoSim. Null model software for ecologists 
 (http://www.garyentsminger.com/ecosim/index.htm)

EcoSim allows you to test for community patterns with non-experimental data performing Monte Carlo randomizations to create “pseudo-communities”, theen statistically compares the patterns in these randomized communities with those in the real data matrix. 

· SPECRICH (http://www.mbr-pwrc.usgs.gov/software.html#a)


SPECRICH Computes species richness or total number of species from empirical species abundance distribution data

· Spatial analysis and sampling site location
· GBIF MAPA (http://gbifmapa.austmus.gov.au/mapa/)


A GBIF demonstration project which allows users to query the GBIF cache using names obtained through the Catalogue of life and to map and analyse the resultant record set. The Survey Gap Analysis (SGA) tool helps to design a biodiversity survey that will best complement the existing survey effort by identifying those areas least well surveyed in terms of environmental conditions. The Species Richness Assessment (SRA) tool provide an estimate of the number of species in an area; and to gain insight into the adequacy of sampling based on abundance distributions for those species. 
· LoLA. Library of Location Algorithms (http://www.mathematik.uni-kl.de/~lola/)

LoLA is designed as a software system comprising the algorithmic methods known in location planning. LoLA consists of a GUI (graphical user interface), a text based interface, and a programming interface which is designed to enable the users of LoLA to write their own C++ programs using algorithms from the LoLA -libraries. 
· ZONATION (http://www.helsinki.fi/bioscience/consplan/)


Zonation is a reserve selection framework for spatial conservation planning. It identifies areas important for retaining habitat quality and connectivity for multiple species, indirectly aiming at species’ long-term persistence. Zonation can be used for various purposes such as spatial conservation prioritization, conservation assessment, reserve selection and reserve network design.

· GeoDa. An Introduction to Spatial Data Analysis (https://www.geoda.uiuc.edu)


GeoDa is the latest incarnation in a long line of software tools designed to implement techniques for exploratory spatial data analysis on lattice data (points and polygons). The free program provides a user friendly and graphical interface to methods of descriptive spatial data analysis, such as spatial autocorrelation statistics, as well as basic spatial regression functionality.
· SAM. Spatial Analysis in Macroecology (http://www.ecoevol.ufg.br/sam/)

SAM is a compact but robust computer program designed as a package of statistical tools for spatial analysis, mainly for applications in Macroecology and Biogeography. SAM runs under Microsoft Windows as a user-friendly, menu-driven, graphical interface computational program. SAM offers a wide spectrum of statistical methods currently used in Surface Pattern Spatial Analysis. 

· S-Distance. (http://www.prd.uth.gr/res_labs/spatial_analysis/software/SdHome_en.asp)

S-Distance is a standalone Spatial Decision Support System, mainly focused on location-allocation analysis. While still being in an early stage, the software is functional and has been tested on many classical Operation Research instances, as well as on several real-world problems. S-Distance is currently being created using Microsoft Visual Basic 6.0 and is intended to be used for educational purposes only.
· SITATION. Facility Location Software. 
(http://users.iems.northwestern.edu/~msdaskin/Mark%20S.%20Daskin%20Software.html#SITATION_Software)


The SITATION software solves several classes of location problems running under Windows 95. This program as others are fully described in the book Network and Discrete Location: Models, Algorithms, and Applications. 

· ResNet and Surrogacy (http://uts.cc.utexas.edu/~consbio/Cons/Labody.html)

ResNet is place prioritization software package designed to select places according to their biodiversity content. Surrogacy allow to test if environmental surrogates can represent biodiversity components.
· spsurvey (http://www.epa.gov/nheerl/arm/analysispages/software.htm)

A R library useful for site selection and spatial survey designs.

· SPATSTAT (http://www.spatstat.org/)

A R library for the statistical analysis of spatial point patterns

· Distribution Models
· The R Project for Statistical Computing (http://www.r-project.org/)


R is the most complete and freely available software for statistical computing and graphics allowing the accomplishment of Generalized Linear Models, Generalized Additive Models, Classification and Regression Trees or Neural Networks models

· DIVA-GIS (http://www.diva-gis.org/)

DIVA-GIS is a free mapping program that can be used for many different purposes. It is particularly useful for mapping and analyzing biodiversity data, such as the distribution of species, or other 'point-distributions'. 

· DIVA-GIS Annapurna (http://cropforge.org/frs/?group_id=34&release_id=185)

Another version of the same programme. 
· Biomapper. A GIS-toolkit to model ecological niche and habitat suitability (http://www2.unil.ch/biomapper/)
Biomapper is a kit of GIS and statistical tools designed to build habitat suitability models and maps for any kind of animal or plant. It is centred on the Ecological Niche Factor Analysis that allows to compute models without the need of absence data.

· DesktopGarp (http://nhm.ku.edu/desktopgarp/index.html)

DesktopGarp is a software package for biodiversity and ecologic research that allows the user to predict and analyze wild species distributions. 

· MaxEnt. (http://www.cs.princeton.edu/~schapire/maxent/)

This software takes as input a set of layers or environmental variables (such as elevation, precipitation, etc.), as well as a set of georeferenced occurrence locations, and produces a model of the range of the given species based on the maximum-entropy approach for species habitat modeling. 
· OpenModeller. (http://openmodeller.sourceforge.net/index.php?option=com_frontpage&Itemid=1)

The OpenModeller project aims to provide a flexible, user friendly, cross-platform environment where the entire process of conducting a fundamental niche modeling experiment can be carried out. The software includes facilities for reading species occurrence and environmental data, selection of environmental layers on which the model should be based, creating a fundamental niche model and projecting the model into an environmental scenario.  A number of fundamental niche modeling algorithms are provided as plug-ins, including GARP, Climate Space Model, Bioclimatic Envelopes, and others. 

· FloraMap (http://www.floramap-ciat.org/inicio.htm)


FloraMap is a software linked to agroclimatic and other databases able to showing the most likely distribution of wild species in nature. 

· CLIMEX (http://www.hearne.com.au/products/climex/edition/climex3/)

A commercial package that enables to asses the risk of pest establishing in a new location and the potential success or failure of a biological control agent from the current locations. 

· JUICE (http://sci.muni.cz/botany/zeleny/hof.php)

JUICE Determine species response curves on environmental gradients, allowing the determination of species optimum and also niche width (tolerance), and identifying species as generalist or specialist. JUICE work in the R package software.
· WhyWhere (http://landshape.org/enm/whywhere-20-server/)


WhyWhere is another modelling software similar to GARP that can detect strong associations with virtually any distribution type becasue it does not require assumptions about the form of the distributions such as gaussian, sigmoidal, exponential, etc, as an input.
· HyperNiche (http://home.centurytel.net/~mjm/hyperniche.htm)


HyperNiche is a software for nonparametric regression, providing a flexible tool for multiplicative habitat modelling, habitat models where the predictors are combined multiplicatively rather than additively.  
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